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ABSTRACT

This paper deais with the iterative sofntfon of nou-linear equations f(x) = 0. We consider
(s) R0
integral intormation on f which is given by :(xo),!'(xo),....l P (x,) and 1+ f(t)dt. We define an inter-
y
3 ()
polatory-integral wethod which uses fntegral intormation and which has maximal order of convergence

i(s)

equal to s+, Since the maximal order of iterations which use I(xo),...,
5

(xo) is equal to s+1, the

U
additional intormation given by the integrat f(t)dt increases the order by two.
Yo
‘. INTRODUCTION

We consider the solntion of the nonlinear scalar equation
(1.1) f(x) =0,

where f is 8 complex function of complex varfable.
In most papers which deal with stationary iterative methods for (1.1) it is assumed we know the

standard information for f (Wozniakowski [74))

‘ s)
o= «1<x0),...,f(" (xg))

where s « | and X0 is an approximation to the solution w. The maximal order of convergence of such
methods is equal to s + | (Traub [64 ], Wozniakowski [73]). We raise the questin tow other types of

information can be used in iterative processes and what 1s the maximal order of convergence ior this in=-

formation.

This paper deals with integral information which consists of the standard intormation mq and addi-

tionally the valne of an ntegral. Thus

X
(s) .
- rHx“),....i (x 1(t) del

Tel,s
Yo

where Yo is a complex number defined in Section 3,

fn Section 2 we define an interpoiatory - integrai method | ek which uses integral intormation
ofl o

bl

1.5 1O estimate ~ and in Section 7 we prove its order tfor & - 1 is maximal, Sections 4, 5 and 6 con-
=1 o3

tain theorems about the convergence of | r C
-1,

Wozniakowski 4 defined for the generatized information M an order of information p(M) and proved

it Is equal to the maximal order of convergebce, In Section 7 we prove that for s 2 | nQd for sujtabie
0
chosen y,, p( ! ) = s + 3, Since p(h) = s + 1, the additional information given by fet)dt increas-
-1, )
’ yo
es the orler of Information by two. For systems of nonlinear equations similar resuits can be proved

and wiil be reported to a tuture paper.




2. INTERPOLATORY - INTE AL ITERATIVE METHOD i_] i

Let us consider the solutfon of the nonlinear equation,
@y, Gy = )

where f:D - Ci, D is an open subset of q:, (E denotes the set of complex numbers. Let o € D be a

aimple zero ot t, fta) = 0 # £'(s). An interpolatory - integral method f . is defined as follows,
b ]

Let x, be an approximation of n. We assume that the information on f is given by
i

) = 1) ® (s) i
(Be8) R  WR (x,if) (e 7 7(x ), : f(t) ded,
il

where Yy depends on X f(k)(xi), R & 05 V500 .8 A f X, and is defined in Section 3., If s = 0 then Yy

can depend on X (e g X4 f(xi_‘). The value of Yy will be chosen to maximize the order of itera-

tion.
)
The information consists of the standard information given by t’(xi),...,f(s (xl) and additionally

the value of the integral. Next, let w, be an interpolatory polynomial of degree at most s +1 such

i

that :
@3 w¥op = (M) k= 0,1,000,8,

X ~xi
2.4) [ w(t)de= £(e) du .

0 b2
if vy exists then the next approximation X4 in i jo g method is defined as a zero of polynomial Wi

1,8

(2.5) wgx, ) =0,

with a criterion to make IO unique, We shall now prove that wi exists and {s unique, Let

X
(2.6) F(x) = [ (1) de,
£

and let L be a polynomial oi degree = s + 2 such that

2.7) gi(yi) = F(yi) = 0,

(

k
(2.%) 8| )(xi) i F(k)

(xi), k = 0,b,...,8t].

Thus, By is a Hermite interpolatory polynomial for F. The assumption Yy # L implies the existence and

the uniqueness ol g, Set

(2.9) wi(x) = ' (v,
1




Then (2.3) and (2.4) are satisfied which compietes the proof. Moreover, from (2.8) and (2.9) foilows

error formuia,
542
2100 F(o = g () = (x = y)(x - xl)“+“ ¢, (%)

where

1810 (5 .
@.11) 6,00 = G, 0) = ] g'... e et

. 5 iy Sl w5 ) W -

(x - xi)) dt' saw dig

s+3°
Difieron-iating (2,10) we get from (2.11),
(2.12) f(x) - wi(x) = R(x)

where

R(x) = R(x,f) = (x = Xi)s+]{ (s42)(x = y) +x = x, ] 6, (x) + Gl(x)(x = x )(x - ALY

3, DEFiNiTION OF A LOWER LIMIT OF THE INTEGRAL

We want to define yy to maximize the order of | " Setting x = o in (2.12) we have
=

(@Rl [ = ui(a) = R(a)
Let us assume for a moment that vy has a zero X sufficiently close to a simple zero a.

v (a)

¥
X -a= - ;ITZT G 0((xi4] - M) = 0(R(m)

i+l

We see that the order of iteration deperds mainiy on R(a). Therefore we shail choose Yy to minimize

R(~) in a certain sense, From (2.,12)

s+l .. 20
(8.2) Miar = (&= X) {1 (s42) (o - Ty T G (m) + Gila) (o = x ) (a - y)-

As Gi(a) and Ci(q) are in generai unknown we want to minimize
(3.3) max(f(s + Dl - y,) t - xi;. [ (2 - X)) (2 - yi)l)-
One can verify that the minimai vaiue of (3.3) is for b equal to y

% =X,
1

(3.4) y=n+

il SRR Iq - X,
i

an
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As we do not know o we have to replace it by an approximation to ay zi which depends only on the stan-

(s)
- ondl . L ol
dard information, z, = zl(xl,f(xl) (xi)) and zi / xl If s 0 then zi zi(xi_],f(xi_]),xi,f(xi)x

We define Yy as

(3.5) ¥ ¢ 21 -

s +2 + ]zi - §IT

It can be proved that one can drop |zl = x| in the denuninator without the change of the order.

Fi-ally, Yyq is defined by

z = %

ic “a
(A o, W )

Hence, from (3.6) and (2.12) we get

(3.7) f(x) - wi(X) = R(x)

for

(s+3)(x-zi) + xi-x

R(x) = R(x,f) = (x - xl)s+]f(s+3)(x - zl) G, (x) + C;(x)(x = %y o 2

vhere v is the interpolatory polynomial defined in Section 2

4. THE CONVERGENCE OF THE ITSRATIVE METHOD | Ty FOR s 2 1
Al
In the previous section we have seen that the order of iteration mainly depends on R(gq). From
(3.7)
(s+3)(a-zi) + X -o
87 =02

K@ = (= x )™ (0430 - 2) 6,0 + 6@ (o - x,)

Hence, to assure the maximal order of | T for s > 1 it suffices to define approximation zy using
= )

Newton method

: (s) Ay
(4.1) Zn ks Zl(xl,t(xl),...,l ,xl)) = X, - ?77;:) L 80,1,...
Theoren 1
If s 21 and
i I(S+3) is a continuous function on K{(r,R) where

f(a) = 0 # £'(a)

2
R(a,R) = fx @ [x = &) =k}, R = k() = max &éi}l:EE:EQt-I::rE>

where the constant C is defined below,




2, a real number r 0 is such that

|
g
i
I

M
|— h(r) 1 and VZ r 1 where
1
2 Mg Pus el 2 i
oy R .8 . s+2 5+ s + + C + 2
iy, ® v @M 357 T % 2
for
vy = inflii%l I; Mi - sup If(i)(x)l i = s+2,5843;
! x€J 5 x€K (@, k)
]
1 M
1 M, = sup If“(x)l; C= C(r—) =3 % Ml 7
2 v
] x€J l(I __2]—)
v

1

Ix'0|5’_]-

9 X9 €J where J = {x :

then the sequen:e [xi] generated in 1 _, _ has the following properties:
=arh)

(i) xi & I Vi
s43 h
(ii) Xig) " O Ai(xi - ) » Vi,
where
IAiI <A Vi, and
2
e 23”{(11('——) v 2 ey (el ¢ 24
i (s42)1  (s¥4). 542
(iii) iim x, = & and
i
i
x - a
iim ) . B where
st}
i=ee (x, = o)
i
i (-])342 {1"(02 n il(b*z)iq) ) i('ﬁ ,)(G) 1 }
Voitam)~ (weyy TR T (e
Proof of (i) (By induction),

Let us assume that L e J. Frem (2.12) wifx) = 0 iff x = H(x) where

1
”'f;x R(x) it x ¥ a
X=ry
(4.2) H(x) =
y + = R(qy) if x=¢n

' (a)

)




Now, using (4.2), (3.7), (2.11) and condition 2 cne can verity ther the assumptions of the Brouwer fix-

point theorem liold tor H in the set J, Hence, there exists x € J, such that wi(x) = 0, So xi+' €J

and, by induction, X0 Jri SN0

Proof of (ii)

From (4.2) and (3.7) we get

1
x _a-——-——l{(x_ ) 1. 104505 505
i+l 1(xi41) it
K|
Therefore
+3
4.3) Kig) ~ @ = Ai(xi - a)s whe*
B s+) £
2 1 i+] i+1
Lo B Rl | - \<e > (5"3)(2 BB ¥
i+l i e
Sl i
e

(-] e
e (s+3)<l_” -ce) 4 - il
+ 6" (x -1 €5 ei
i+1 ¢ =

i
s+ 2
where e, = x, - and C1 satisfies the relation
2
z, = o Ci(xi -2 .
An upper bound on AI onc can find using an assumption 2 and (2,11),

Proot of (1ii)

From (4,3) and (i),

! $+3
[y = ol s alx, - ol

and thus
o

N e
- < . i.
Iy =al @ T 3™ et o
: i L 5+2
From assumption 2 tollows that A r— 1, and hence,

lim xi = .,

i~

Finally from (4.3) and (4.4) it can be shown that

X, s o
!im i }im Ai = LBy
i~ (xi - ) i~
which completes the proof of Theorem 1. [ )




In general, B is not equai zero (see point (1i1) which means that s+3 is the order of the inter-

polatory - integral method i_, for s » |, (Traub [64], Wozniakowski [764]). Note that iterative meth-

)
ods which use only the standard information t(xi).....f(s)(xt) have orders at most stl, Additional in-

X
formation given by ?i f(t)dt increases the order of 1 _, by two. The usage of the I il 6 method in
! T R ]

Y,
practice is profltabie if the evaluation cost of the value of integral is approximately equal to the

evaluation cost of function or its derivatives.
5. THE CONVERGENCE OF THE | 1.0 METHOD
)

Now, we assume s = 0, which means that the information is of the form:

X, ) "
‘l = I' -
Y 0 [f(xi), ) f(t) dt] where y1 z, + 3 ,

-1
Vi

Note that we cannot now define z, by the Newton method as we do not know the value of the first deriva-

tive. Let z, be given now by the secant method,

X

- X
G.A) B o®E i-]

- f(x,) vi o,
i i f(xi) - f(xi_]) i

In this case, the interpolatory - integral method I 1.0 is a one-point method with memory (Traub [641]).
=1y

Theorem 2
if

1. f(s) is a continuous function on K(a,R) = [x: |x - a| <R}, where f(a) = O ¢ £'(a)

k= (D = m.><?-_CE22-+—f, r>

where the constant C is defined beiow,

2. a real number | 0 is such that

ZM,)
™ «n() 1 and v—“r' 1,
1

where
gl M

2
n) = i—{(l $ ¢ - 2—2-+ 2—%)'3(|_+ e[y # 2l 1
1

for

Ve infl;léﬁ% |, Mi = sup lf(i)(x)| o = 2B

xcJ x (K (v, R)
- | SR Ll
Wy, & su[; bl e 06 > = g = . (‘ M I_\--
‘ - —
X, ; 5, /}
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3 Kgo X, ¢ J where J = {x: |x - al r}, then the sequence [xi}, generated in i 1.0 has the follow-
T

ing properties:

(1) x €J (IR0 P

‘)
(i) Rogq = 0% Ai(x[ - ) (xi_] - a)

where ;Ai! < A L= Oklsess 4

% N

2 3
A-v—] '(n([')+c)2—+57|3<1 +ch + 20y,

(1i1) lim X = and moreover
1-.\1.

lim x“; - = B where B '4]- %'-((Cg’%)z ’
f== (xi - ) (xi_] - a)
X - q R
tiv)  lim J'*x—“i—arpi-- BPH where p = 1 + Lk [ ]

j—x

The proof of this theorem is omitted since it is similar to the proof of Theorem 1. From (iv) follows

that 1 + .2 is the order of the interpolatory - integral method 1 1.0°
=

6. THI CONVERGENCE OF THE 1_] r METHOD FOR MULTIPLE ZEROS

3

let us now assume that s =1 and g is an m fold zero, i.e.,

(m-1)

f(a) = £'(a) = ,.u. = f (@) =0¢ 1™y,

where m < g,

The intormation is given by

(s)

*
(x.), |~ f(t) dt} where

a = g
N 4 mxi), £100) 0 eenf : g
i

-1,

i
A W — for z = lo,s(xi'{)

The notation io - (xi;l) is used by Traub 641 and Wezniakowski [73], The character of convergence of
1]

the I _, ¥ method in this case is given by Theorem 3,

Theorem 3

It s ¢ 1 and

543
1(s 4 is a continuons function on K(~,R) = {x: lx - G] < R1 where




W e a——— TR Y

sim

R o= R([) = max ({822 of o ]")

s + 2
where the constant D is defined below,
2, a real number r 0 is such that
]
: 4 gl _
f w [ w0,
1
! where 1
stl s+1 s+l e
ﬁ B ™M M _L ak
YA 8+2 s+l 2
FIeEee @ o ) Tt Ty e | (w0l 2l
i v_ = inf LLE nls Mgyy = 8uP |f(s+l)(x)]
x€J Wx - a) x€J
Mi =  sup [f(i)(x)l i = g+2, 543,
X(.K(QDR)
s+
m
) s+1
V (SH)> s+l nln §;—]']
ST e
and
1 I
M mos#l st '
s+l -, m 2 1 p
(1) <V—-—(s+]):> 2 F , :
- ‘
|
3. my €4, J = [x - o <« [
then
(i) xil,.', i = @il e ,}itl xi-a I
s+1+p :E
s+1
(ii) lxi*-l - fAi Xy - ol B where p = min(-—m—-,Z). !
Moreover {F
Ay 7 A,
1
s+l s+l m
sl) P M M !
N AP e s 2 g 2 (s+3) 0+p[ )+ 4
v ' (s+ (s+4)! ° s +2 d

e




%4y - o

(1i1) ii: ———iil——;:T:— S B where
Ixi w GI "
1 il
L m
2
LIFS+ )(qQJ lf(s+3)(a)l o A

m/ m. lf(SH)(g)l -ml)

B o= e wl . . ;
1™ (@ | gﬁl = 2,0\ £ ™ (g (s41)! (s+2). 2-p,0  (s#)! s %2

1 if i=0 [ |

(iv) p(m) = (s+l+p)/m is the order o! convergence of I_ method for m multiple zeros.

1,s

The proof of this theorem is omitted since it is similar to the proof of Theorem 1.

7. MAXIMALITY OF 1 il
=i

Let ¥_ be a class of staticrary iterative methods @ which use information M ik and which
=l

1,s

have well defined order p(yp 1 ) (Wezniakowski [74]), Trom Theorem 1 it follows that the interpolatory-
-1,s

-1,8

integral method I belongs to Y s B 1y
-1,s -1,s
Now we shall prove that I 1.6 has maximal order in the class ¥ 1.8’ i,e,.,
=iy =ty
p(l_,’s) -' s&p p(»o_]’s).
w-l,s -1,s

Wozniakowski [74] defined (Definition 7) the order of information (") and proved it is equal to the

maximal order. Thus, it suffices to show that in our case

p([_,"s) = p('ﬁ-] ,s)ﬁ

Theorem &

X
let M, =R i) - () ensf S, {1 £(e) de, for any y, =y, (xf (k)00 f P ().
Then b

o =1 & - sl
1f s 21 and ¥y = 2y + =00 for z, = Xy f'(xi)
then p(T DR ™
-1,s
Proof

Let ?T be the class of complex functions of complex variable which have a simple zero and which

10

R,




dre analytic in the neighborhood of o (see Definition 1 in Wozniakowski [74}), We recall the definition

of the order of iu.formation. Let f ¢ }' and {t,]c F where
f ) = 0

B Gla) =8 Lotifie., lin o = a,

-

(7.2) lim rfk)(a) =5 % . i kw UNSRENFIRY e gy

-

Next let us assume that

@3) % (xi,f) = m_l

! s ) vi,
’

(xi.fi

s S

where [xi} is an arbitrary sequence converging to o, Let v be an interpolatory polynomial of degree at

most 8 + 1 defined as follows:

ToasGpvp =B, 6D, vi
Thus

) - £,(x) * f(x) - wilx) 4w (x) - f,(x) = R(x,f) - R(s,£)).
From it and from (2,12) ft follows
(7.8) & - a; = 0((f(a) - £,()) = 0(|R(a, )| + IR(a,fi)l) -

1 2
= 0(|a - xi|5+ . | (s+2) (o - yi) + o - xi' + |a - xil'+ o o - yil)

Moreover, we shall show that ‘his bound is sharp, Let { be a number definid as follows:

0 otherwise
Let

s+l+f -

hi(x) = s xi) = bud = ks

i
where

(s+240) ¥q + X

X By = w

Setting
(7.5) fi(x) = f(x) + hi(X)' Vi

for any function f ¢ L;‘, (f(w) = 0, [i(ai) = 0) one can verify that conditions (7.1), (7.2) and (7.3)

hold. Next, there exist constants €. 0 such that {iw ¢, =C 0and
i i

1

s

e o am o o pemah LS o e i e B e e s



fa)

s+14(C I ‘g

(7.6) |a - ’1' = Cilf(a) 5 f1(7)| & Ci'“ <R |s+1+g

=il
i ol prETg lo - % | (s4240) (amy  )+amx |

waich proves that (7.4) is sharp.

From (7.4) and (7.6) it follows that ior any yi the order of information p = p(m_]’s) exists, Let
us assume that p s+3. Let ¢ 0 be a number such that p - ¢ s+ 3+ ¢. For f and {fi\ given by
(7.5) we get from (7.6):
lo - o lo - o

lim sup

{ -

+ @  lim sup
i~ X
I,

- § *

N alp-c . a|s+3?c

EN

which is a contradiction. Heuce p < s+3 for any ¥y yi(xi’f(xi)"'f(S)(xi)' Now we shall show that
the above estimation of p is achievable for s = 1.

Indeed, setting

L YRS L
7a 8y S S B L)
we have
R
lim b ow . ol (so L= 1),
fom @ T %y s-~2

[t is easy to verify that from (7.4) and (7.6) it follows
p(ﬂ_,’s) = 5 4 3,

which completes the proof of Theorem 3, @

From Theorems | and 3 we get

Corollary 1

The interpolatory - integral method 1 is maximal, i.e.,

1,s
P(I_]’S) = p(ﬂ_]’s). e
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